560

I Semester B.C.A. Degree Examination, December 2018 (CBCS Scheme) COMPUTER SCIENCE Discrete Mathematics

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all Sections.

bas (2) And date S of a O S and SECTION - A S III 10 10

I. Answer any ten of the following.

 $(10 \times 2 = 20)$

1) Write the following sets in set-builder form

- 2) Define universal set. Give an example.
- 3) Let $A = \{1, 2, 3, 4, 6, \}$. Let R be the relation defined by $B = \{(a, b)/a \in A, b \in A \text{ a divides b }\}$.
 - a) Write the elements of R.
- 8) Write the domain of R. (8)
- 4) Define Tautology.
- 5) What is upper triangular matrix? Give an example.
- 6) Find the value of x.
 - a) $\log_4 64 = x$
 - b) $\log_{2} 27 = 3$
- 7) How many different signals can be made by 6 flags of different colors?
- 8) Define a group.
 - 9) If $\vec{a} = 3i 4j$, $\vec{b} = 2i + j$, find $|\vec{a} + \vec{b}|$.
 - 10) Find the value of 'a' if the distance between the points (a, 2) and (3, 4) is $\sqrt{8}$ units.
 - 11) If the centroid of the triangle ABC is (2, 3) and A = (4, 2) and B = (4, 5). Find the co-ordinates of C.
 - 12) Define slope of a line.

- 23) A examination question paper consists of 12 questions divided in to part A and Part B. Part A consists of 7 questions and Part B consist of 5 questions. In how many ways can a student answer 8 questions in the examination if
 - a) there is no condition put in the paper
 - b) the student has to answer 5 from Part A and 3 from Part B.
- 24) Show that $(Z_6, +_6)$ where $Z_6 = \{0, 1, 2, 3, 4, 5\}$ is a group.
- 25) Show that the set of all fourth roots of unity form a group under multiplication.
- 26) Show that the points with position vector 2i j + k, i 3j 5k and 3i 4j 4k are the vertices of a right angled triangle. Also find the remaining angles of the triangle.
- 27) Show that the points A (2, 3, -1), B (1, -2, 3), C (3, 4, -2) and D (1, -6, 6) are coplanar.
- 28) Find the area of the parallelogram whose diagonals are

$$\vec{a} = 3i + j - 2k$$
 and $\vec{b} = i - 3j + 4k$.

SECTION - D

IV. Answer any four of the following.

 $(4 \times 5 = 20)$

- 29) Show that the points (2, -1) (3, 4), (-2, 3) and (-3, -2) form a rhombus.
- 30) Find the area of the quadrilateral whose vertices are (1, -1), (7, -3) (12, 2) and (7, 21).
- 31) Find the equation of the locus of point which moves such that it is equidistant from the points (1, 2) and (-2, 3).
- 32) Show that the line joining the points (2, 3) and (4, 2) is perpendicular to the line joining the points (5, 3) and (6, 5).
- 33) Find the equation of the line passing through (5, -2) and making an angle 150° with x-axis in the positive direction.
- 34) Find the equation of the line passing through (-2, 6) and sum of the intercepts on the co-ordinate axes is 5.

SECTION - B

II. Answer any six of the following.

 $(6 \times 5 = 30)$

13) If $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the universal set. $A = \{2, 3, 4, 8\}$, $B = \{1, 3, 4\}$ and $C = \{3, 4, 5, 6\}$ verify

 $(A \cup B)' = A' \cap B' \text{ and } (A \cap B)' = A' \cup B'.$

- 14) Let $A = \{-2, -1, 0, 1, 2\}$, $B = \{-3, -1, 1, 5\}$. Define $f : A \to B$ by $f (a) = 2a^2 3$, for all $a \in A$. Is fone-one? On to? Find $f^{-1}(5)$ and $f^{-1}(-1)$.
- 15) Show that the proposition (p \wedge q) \wedge ~ (p \vee q) is a contradiction.
- 16) Write the converse, inverse and contrapositive of the conditional "If two integers are equal then their squares are equal".
- 17) Find the inverse of the matrix $\begin{bmatrix} 2 & -1 & 3 \\ -1 & 4 & 2 \\ 0 & -3 & 1 \end{bmatrix}$
- 18) Solve using Crammer's rule 5x + 2x + z = -1; x + 7y 6z = -18, 3y + 6z = 9.
- 19) Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$.
- 20) Verify the Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Serolos mensilib lo apart SECTION - C

III. Answer any six of the following.

(6×5=30)

- 21) If $a^2 + b^2 = 7ab$ S.T.
 - a) $2 \log (a + b) = 2 \log 3 + \log a + \log b$
 - b) $2 \log (a b) = \log 5 + \log a + \log b$
- 22) In how many ways 3 boys and 5 girls can be arranged in a row so that
 - a) no two boys together?
 - b) all girls are together