

I Semester B.C.A. Degree Examination, November/December 2014 (Y2K14 - CBCS Scheme) Computer Science BCA 104 T : DIGITAL ELECTRONICS

Time: 3 Hours Max. Marks: 70

Instruction: Answer all Sections.

SECTION - A SECTION - A

Answerany ten questions.

(2×10=20)

- 1. Define the terms short circuit and open circuit.
- 2. What are the different types of network ports?
- 3. What is a semiconductor? Give example.
- 4. How are solids classified?
- 5. Convert B64.53 to binary.
- 6. Define minterm and maxterm.
- 7. Simplify the following Boolean expressions (A + B) + CD
- 8. What is an X-OR gate? Give the truth table and logic symbol of X-OR gate.
- 9. What is a combinational circuit? Give example.
- 10. What is an adder? Give the logic diagram of half adder circuit.
- 11. Mention the two applications of D Flip-flop.
- 12. Define the terms propagation delay and hold time.

SECTION - B

Answer any 5 questions.

(10×5=50)

1. a) State and explain Superposition theorem.

5

b) What is series parallel circuit? Explain.

P.T.O.

2. a)	Explain P-N junction with a neat diagram.	5
b)	Write a note on extrinsic semiconductors.	5
3. a)	Explain the characteristics features of IC family gates.	5
b)	State and prove De-Morgan's theorems.	5
4. a)	Convert the following: i) $(453.26)_{10} = ()_2, ()_8.$	6
b)	ii) $(1101.110)_2 = ()_8$, $()_{16}$ Simplify the following into POS using K-Map	
	$F(A B C D) = \sum (0, 2, 3, 5, 11, 13) + \sum D(1, 7, 10)$	4
5. a)	Prove NAND and NOR gates as universal gates.	6
b)	With a logic diagram explain decimal to BCD encoder.	4
6. a)	Write a note on parity checker and parity generator.	5
b)	With a neat diagram explain 4-bit parallel binary adder.	5
7. a)	Explain the working of J-K flip-flop with a neat diagram.	5
b)	Differentiate between a latch and a flip-flop.	5
8. a)	Explain SISO shift register with a diagram.	5
b)	Write a note on applications of shift registers.	5

SIGNEZ SONE TRUSTO ISACHEOIDINOS PIRANTE