IV Semester B.C.A. Degree Examination, May 2016 (CBCS) (Fresh) (2015-16 and Onwards) COMPUTER SCIENCE BCA 405: Operations Research Time: 3 Hours Max. Marks: 100 | | SECTION-A BRIGHT | | |----|--|---| | | Answer any ten of the following: 1) Mention some of the applications of operations research. 2) Define slack and surplus variable. 3) Explain decision variables with examples. 4) Define degenerate basic feasible solution in transportation problem. 5) Explain optimal solution in transportation problem. 6) What are the different methods of solving assignment problem? 7) Define expected time in PERT. Write its mathematical formula. 8) Explain Fulkerson's rule of numbering events. 9) Differentiate between PERT and CPM. 10) Define independent float and free float of an activity. 11) Explain principle of Dominance. 12) What is saddle point and value of the game? | (a (V)
10×2=20) | | | SECTION-B | | | 1. | 13) a) Explain phases of operations research. b) A firm is engaged in producing two Products A and B. Each unit of Products A requires 2 kg of raw material and 4 labour hours for processing, was each unit of B requires 3 kg of raw materials and 3 labour hours for same type. Every week, the firm has an availability of 60 kg of raw materials and 96 labour hours. One unit of Product A sold yields Rs. 40 and one of Product B sold gives Rs. 35 as profit. Formulate an LPP. | here
or the
terial
e unit
6 | | | 14) a) Write a general Linear Programming Problem (LPP) in standard form | n. 4 | | | b) Solve the following LPP by graphical method : | | $x_1, x_2 \ge 0$ P.T.O. - 15) Obtain initial basic feasible solution for the following transportation problem using - a) North-west corner method. - b) Matrix-minima method. 5 | | | To | 45711 | MODE | Supply | |----------|------|----|-------|------|--------| | | 1089 | 2 | 111 | 4 | 30 | | From | 3 | 3 | 2 | 1 | 50 | | I MAX MA | 4 | 2 | 5 | 9 | 20 | | Demand | 20 | 40 | 30 | 10 | | - 16) a) Explain Vogel's approximation method of solving transportation problem. - b) Solve the transportation problem. 4 6 | Destination | | | | | | |-------------|----|-----|----------------------------|--|---| | | Α | В | С | D | Supply | | 1 | 11 | 20 | 7 | 8 | 50 | | 2 | 21 | 16 | 20 | 12 | 40 | | 3 | 8 | 12 | 18 | 9 | 70 | | | 30 | 25 | 35 | 40 | elcerixe er | | | 4 | 3 8 | A B 1 11 20 2 21 16 3 8 12 | A B C 1 11 20 7 2 21 16 20 3 8 12 18 | A B C D 1 11 20 7 8 2 21 16 20 12 3 8 12 18 9 | 17) a) Explain basic components of Network. b) Construct an activity-on-arrow diagram for the following dependency table of a particular project. 4 | Jobs | Predecessor | | |------------|--|--| | а | - | | | 717 b min | a la | | | С | a hyer | | | d | C | | | e de | b, c | | | tone frame | d, e | | - 18) Write short notes on: - a) Strategies used in game theory. 5 b) Maximin-Minimax principle. 5 ## SECTION - C same type. Every week, the tirm has an avail III. Answer any four of the following: $(4 \times 10 = 40)$ 19) a) Explain basic feasible solution in LPP with its types. 6 b) Solve by simplex method. Maximize $Z = 4x_1 + 10x_2$ Subject to $$2x_1 + x_2 \le 50$$ $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ $$2x_1 + 3x_2 \le 90$$ where $$x_1, x_2 \ge 0$$. 20) Obtain optimum basic feasible solution to the transportation problem. 10 | | | То | | Available | |---------|---|--------------|---|-----------| | | 7 | 3 | 2 | 2 | | From | 2 | the miles of | 3 | 3 | | 3 Hours | 3 | 4 | 6 | 5 | | Demand | 4 | | 5 | 10 | 21) a) Explain Hungarian method for solving assignment problem. 5 b) A departmental head has four subordinates and four tasks to be performed. The subordinates differ in efficiency and the tasks differ in their intrinsic difficulty, this estimate, of the time each man would take to perform each test, is given in this matrix below. How should the tasks be allocated, one to a man, so as to minimize the total man-house. 5 | Wen | | | | | | | | |-------|----|----|----|--------------|--|--|--| | Tasks | 1 | 2 | 3 | 10 W 14 1 15 | | | | | A | 18 | 26 | 17 | | | | | | В | 13 | 28 | 14 | 26 | | | | | С | 38 | 19 | 18 | 15 | | | | | D | 19 | 26 | 24 | 10 | | | | 22) a) Explain the mathematical formulation of an assignment problem. 4 24) Use the dominan b) A company has a team of four salesmen and there are four districts where the company wants to start its business. After taking into account the capabilities of salesman and the nature of districts, the company estimates that the profit per day in rupees for each salesman in each district is given below: 6 | | | Districts | | | | |----------|---|-----------|-----|----|----| | | | 1 | 2 | 3 | 4 | | | A | 16 | 10 | 14 | 11 | | Salesman | В | 14 | 11 | 15 | 15 | | | C | 15 | 15 | 13 | 12 | | | D | 13 | 1.2 | 14 | 15 | Find the assignment of salesmen to various districts which will yield maximum profit. 23) The following table shows the jobs of PERT network with their time estimates in days. | Job | Duration (Days) | | | | | |----------------|--------------------------|-----------------|-------------------------|--|--| | [-]
(400.00 | Optimistic Most Likely | | Pessimistic | | | | 1-2 | 3 | 6 | 15 | | | | 1 – 6 | 2 | 5 | 14 | | | | 2 – 3 | 6 | 12 | 30 | | | | 2 – 4 | edes2nd br | a sens 5brodus | tuot 2.8 bear | | | | 3 – 5 | refilb5xlast | diesch fund thi | 17 | | | | 4 – 5 | woulg take to | iem do e emil | 91100 15 | | | | 6 – 7 | 3 941 | unda 9 7H M | 27 | | | | 5 – 8 | 1.980 | identify 4 | izavm ₇ m of | | | | 7 – 8 | 4 | 19 | 28 | | | 10 - i) Draw the project network. - ii) Calculate the length and variance of the critical path. - iii) What is the approximate probability that the jobs on the critical path will be completed in 41 days? - iv) What due date has about 90% chance of being met? - 24) Use the dominance principle to solve the following game. ## Player B 10